Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we interrogate whether data quality issues track demographic group membership (based on sex, race and age) and whether automated data cleaning — of the kind commonly used in production ML systems — impacts the fairness of predictions made by these systems. To the best of our knowledge, the impact of data cleaning on fairness in downstream tasks has not been investigated in the literature. We first analyse the tuples flagged by common error detection strategies in five research datasets. We find that, while specific data quality issues, such as higher rates of missing values, are associated with membership in historically disadvantaged groups, poor data quality does not generally track demographic group membership. As a follow-up, we conduct a large-scale empirical study on the impact of automated data cleaning on fairness, involving more than 26,000 model evaluations. We observe that, while automated data cleaning is unlikely to worsen accuracy, it is more likely to worsen fairness than to improve it, especially when the cleaning techniques are not carefully chosen. Furthermore, we find that the positive or negative impact of a particular cleaning technique often depends on the choice of fairness metric and group definition (single-attribute or intersectional). We make our code and experimental results publicly available. The analysis we conducted in this paper is difficult, primarily because it requires that we think holistically about disparities in data quality, disparities in the effectiveness of data cleaning methods, and impacts of such disparities on ML model performance for different demographic groups. Such holistic analysis can and should be supported by data engineering tools, and requires substantial data engineering research. Towards this goal, we discuss open research questions, envision the development of fairness-aware data cleaning methods, and their integration into complex pipelines for ML-based decision making.more » « less
-
In this paper, we interrogate whether data quality issues track demographic characteristics such as sex, race and age, and whether automated data cleaning — of the kind commonly used in production ML systems — impacts the fairness of predictions made by these systems. To the best of our knowledge, the impact of data cleaning on fairness in downstream tasks has not been investigated in the literature.We first analyze the tuples flagged by common error detection strategies in five research datasets. We find that, while specific data quality issues, such as higher rates of missing values, are associated with membership in historically disadvantaged groups, poor data quality does not generally track demographic group membership. As a follow-up, we conduct a large-scale empirical study on the impact of automated data cleaning on fairness, involving more than 26,000 model evaluations on five datasets. We observe that, while automated data cleaning has an insignificant impact on both accuracy and fairness in the majority of cases, it is more likely to worsen fairness than to improve it, especially when the cleaning techniques are not carefully chosen. This finding is both significant and worrying, given that it potentially implicates many production ML systems. We make our code and experimental results publicly available.The analysis we conducted in this paper is difficult, primarily because it requires that we think holistically about disparities in data quality, disparities in the effectiveness of data cleaning methods, and impacts of such disparities on ML model performance for different demographic groups. Such holistic analysis can and should be supported with the help of data engineering research. Towards this goal, we envision the development of fairness-aware data cleaning methods, and their integration into complex pipelines for ML-based decision making.more » « less
-
null (Ed.)Machine Learning (ML) is increasingly used to automate impactful decisions, and the risks arising from this wide-spread use are garnering attention from policymakers, scientists, and the media. ML applications are often very brittle with respect to their input data, which leads to concerns about their reliability, accountability, and fairness. While bias detection cannot be fully automated, computational tools can help pinpoint particular types of data issues. We recently proposed mlinspect, a library that enables lightweight lineage-based inspection of ML preprocessing pipelines. In this demonstration, we show how mlinspect can be used to detect data distribution bugs in a representative pipeline. In contrast to existing work, mlinspect operates on declarative abstractions of popular data science libraries like estimator/transformer pipelines, can handle both relational and matrix data, and does not require manual code instrumentation. The library is publicly available at https://github.com/stefan-grafberger/mlinspect.more » « less
An official website of the United States government
